Technical Note: The Effect of Midshaft Location on the Error Ranges of Femoral and Tibial Cross-sectional Parameters

Vladimir Sládek,1,2* Margit Berner,3 Patrik Galeta,4 Lukáš Friedl,5 and Šárka Kudrnová6

1Department of Anthropology and Human Genetics, Faculty of Science, Charles University in Prague, 128 43, Prague 2, Czech Republic
2Institute of Vertebrate Biology, AS CR, 603 65, Brno, Czech Republic
3Department of Anthropology, Natural History Museum, Vienna, Austria
4Department of Anthropology, University of West Bohemia in Pilsen, 30614, Pilsen, Czech Republic
5Department of Anthropology, Tulane University, New Orleans, LA 70118
6Department of Anthropology, Faculty of Science, Charles University in Prague, 128 43, Prague 2, Czech Republic

KEY WORDS biomechanical analysis; cross-section; femora; tibiae; error range

ABSTRACT In comparing long-bone cross-sectional geometric properties between individuals, percentages of bone length are often used to identify equivalent locations along the diaphysis. In fragmentary specimens where bone lengths cannot be measured, however, these locations must be estimated more indirectly. In this study, we examine the effect of inaccurately located femoral and tibial midshafts on estimation of geometric properties. The error ranges were compared on 30 femora and tibiae from the Eneolithic and Bronze Age. Cross-sections were obtained at each 1% interval from 60 to 40% of length using CT scans. Five percent of deviation from midshaft properties was used as the maximum acceptable error. Reliability was expressed by mean percentage differences, standard deviation of percentage differences, limits of agreement, and mean accuracy range (MAR) (range within which mean deviation from true midshaft values was less than 5%). On average, tibial cortical area and femoral second moments of area are the least sensitive to positioning error, with mean accuracy ranges wide enough for practical application in fragmentary specimens (MAR = 40–130 mm). In contrast, tibial second moments of area are the most sensitive to error in midshaft location (MAR = 14–20 mm). Individuals present significant variation in morphology and thus in error ranges for different properties. For highly damaged fossil femora and tibiae we recommend carrying out additional tests to better establish specific errors associated with uncertain length estimates. Am J Phys Anthropol 141:325–332, 2010. © 2009 Wiley-Liss, Inc.

Despite methodological progress (see for example review in Ruff et al., 2006), biomechanical analysis remains a demanding approach for studying bone cross-sectional geometry. The reliability of biomechanical approaches has been examined in comparisons of various methods used to obtain cross-sectional properties (Ruff, 1986; Stock, 2002; O’Neill and Ruff, 2004; Stock and Shaw, 2007), for accuracy of the endosteal boundary identification (Ruff and Hayes, 1983), as well as for inter- and intra-observer variation in computed tomography (CT) scan computation of the cross-sectional properties (Sailer et al., 2003). However, reliable analysis of cross-sectional geometry also depends upon reliable location of the analyzed cross-section on the long-bone shaft (Ruff, 2000).

The most commonly employed method for locating long-bone shaft cross-sections is based on their position relative to bone length. Unfortunately, the preservation of femoral and tibial length is often poor in prehistoric samples and the position of the cross-section frequently has to be estimated (e.g., Day and Molleson, 1976; Trinkaus and Ruff, 1989, 1996; Ruff et al., 1999; Trinkaus et al., 1999a; Haesler and McHenry, 2004), but there is some concern about the reliability of the resulting length estimates (Simmons et al., 1990; Jacobs, 1992; Ernestová, 2003; Wright and Vasquez, 2003). Uncertainty also occurs when the location on the long-bone shaft is estimated indirectly by morphological features. When the length is not preserved, anatomical features must be used (e.g., maximum pilasteric development), sometimes together with other information such as height, weight, and body proportions.

Several methods have been used to reconstruct the length of poorly preserved femora and tibiae (e.g., Steel and McKern, 1969; Steele, 1970; McHenry, 1974, 1991; Day and Molleson, 1976; McHenry and Berger, 1998; Trinkaus et al., 1999a; Haesler and McHenry, 2004), but there is some concern about the reliability of the resulting length estimates (Simmons et al., 1990; Jacobs, 1992; Ernestová, 2003; Wright and Vasquez, 2003). Uncertainty also occurs when the location on the long-bone shaft is estimated indirectly by morphological features. When the length is not preserved, anatomical features must be used (e.g., maximum pilasteric development), sometimes together with other information such as height, weight, and body proportions.

Grant sponsor: Czech Science Foundation; Grant number: GAČR 206/09/0589; Grant sponsor: NSF; Grant number: 0642297.

*Correspondence to: Vladimir Sládek, Department of Anthropology and Human Genetics, Faculty of Science, Charles University in Prague, Vinicˇna´ 7, 128 43, Prague 2, Czech Republic.
E-mail: sladekV@yahoo.fr

Received 21 November 2008; accepted 20 June 2009

DOI 10.1002/ajpa.21153
Published online 16 November 2009 in Wiley InterScience (www.interscience.wiley.com).
as in situ burial lengths (Trinkaus and Ruff, 1999). Unfortunately, the error for estimation of the midshaft location along the shaft is not known and reliability can only be approximated. Given the uncertainty associated with bone length estimation and the fact that the midshafts for both femora and tibiae are not directly marked by anatomical landmarks, we expect there to be error in cross-sectional properties associated with the location of cross-sections.

In light of this, we analyzed the errors in cross-sectional properties associated with variation in location of the femoral and tibial midshafts. Four cross-sectional properties were studied: cortical area (CA), antero-posterior, and medio-lateral second moments of area (I_{A-P} and I_{M-L}), and polar moment of area (J). The expected error range for the cross-sectional properties is inferred from the central tendency found for Pecos femora and tibiae (Ruff and Hayes, 1983) (see Fig. 1). We hypothesized for femora that the properties most sensitive to midshaft location are CA in a distal direction from midshaft and I_{M-L} in both directions (Fig. 1a). In tibiae, we hypothesized the highest error associated with midshaft location for second moments of area but minimal error for CA (Fig. 1b).

MATERIALS AND METHODS

Sample

The analysis is based on 30 femora and tibiae (15 females and 15 males) from the eneolithic and bronze age (see details about the sample in Sládek et al., 2006). The primary requirement was complete preservation of biomechanical length (BML) (see Ruff and Hayes, 1983). The right bone was preferred for analysis when possible.

Measurements and cross-sections

CT scan images were taken at intervals of 1% BML in the midshaft region from 60 to 40% of BML. Details about CT scanning (e.g., definition of measurements, orientation of bones), CT scan digitizing, and computation of geometric properties were reported earlier (Sládek et al., 2006). The geometric properties obtained—cortical area (CA), second moments of area (I_{A-P}, I_{M-L}), and polar second moment of area (J)—were further tested for bias and error between target and particular 1% BML interval cross-sections. CA estimates cross-sectional rigidity in axial compression and tension, I_{A-P} and I_{M-L} evaluate resistance to bending rigidity against antero-posterior and medio-lateral loads, and J estimates torsional rigidity (Ruff, 2000).

Statistical methods

Femoral and tibial midshafts (50% of BML) represent the target cross-section. The bias and error in locating the target cross-section are expressed by the following:

1. Mean percentage difference (MD%) represents the directional bias between the target location and particular 1% of BML cross-sections. MD% varies from negative to positive values. The hypothesis of zero directional bias is examined by a paired t-test. MD% was calculated using the following formula:

$$MD\% = \frac{\sum_{i=1}^{n} \left| \frac{CS_i - C_{Starget}}{C_{Starget}} \right|}{n} \cdot 100$$

where $C_{Starget}$ is a cross-sectional parameter value in the target location at 50% of BML in the ith individual, CS_i is the same parameter value at a particular 1% of BML section (e.g., 54 or 42%) and $n = 30$ is the sample size.

2. Standard deviation of percentage difference (SD%) is a measure of the random error in the location of the target reference (Altman and Bland, 1983; p 314).

3. Mean percentage absolute difference (MAD%) estimates the overall level of difference between the target location and compared cross-sections. The values of MAD% are always positive. MAD% is computed as follows:

$$MAD\% = \frac{\sum_{i=1}^{n} \left| \frac{CS_i - C_{Starget}}{C_{Starget}} \right|}{n} \cdot 100$$

The symbols are described in equation for (1) above.

4. Limits of agreement (LA) represent the interval within which we would expect 95% of percentage differences to be between the target location and compared cross-sections. The limits of agreement are com-
Table 1. The bias and error summary for femoral cross-sectional parameters

<table>
<thead>
<tr>
<th></th>
<th>MD%a</th>
<th>SD</th>
<th>MAD%b</th>
<th>SD</th>
<th>95% LAc</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>60%</td>
<td>8.6**</td>
<td>4.91</td>
<td>8.83</td>
<td>-1.00; 18.26</td>
</tr>
<tr>
<td>59%</td>
<td>7.5**</td>
<td>4.45</td>
<td>7.96</td>
<td>4.37</td>
<td>-0.80; 16.64</td>
</tr>
<tr>
<td>58%</td>
<td>7.0**</td>
<td>4.02</td>
<td>7.23</td>
<td>3.63</td>
<td>-0.86; 14.91</td>
</tr>
<tr>
<td>57%</td>
<td>6.2**</td>
<td>3.53</td>
<td>6.41</td>
<td>3.07</td>
<td>-0.75; 13.10</td>
</tr>
<tr>
<td>56%</td>
<td>5.2**</td>
<td>2.92</td>
<td>5.26</td>
<td>2.73</td>
<td>-0.57; 10.88</td>
</tr>
<tr>
<td>55%</td>
<td>4.2**</td>
<td>2.93</td>
<td>4.61</td>
<td>2.65</td>
<td>-1.51; 9.98</td>
</tr>
<tr>
<td>54%</td>
<td>3.2**</td>
<td>2.34</td>
<td>3.37</td>
<td>2.10</td>
<td>-1.38; 8.70</td>
</tr>
<tr>
<td>53%</td>
<td>2.4**</td>
<td>1.99</td>
<td>2.66</td>
<td>1.63</td>
<td>-1.05; 6.51</td>
</tr>
<tr>
<td>52%</td>
<td>1.6**</td>
<td>1.96</td>
<td>1.96</td>
<td>1.54</td>
<td>-2.30; 5.40</td>
</tr>
<tr>
<td>51%</td>
<td>1.2**</td>
<td>1.70</td>
<td>1.49</td>
<td>1.44</td>
<td>-2.15; 4.53</td>
</tr>
<tr>
<td>49%</td>
<td>-0.8*</td>
<td>1.48</td>
<td>1.34</td>
<td>1.00</td>
<td>-3.70; 2.11</td>
</tr>
<tr>
<td>48%</td>
<td>-0.9*</td>
<td>1.69</td>
<td>2.19</td>
<td>1.37</td>
<td>-5.28; 1.35</td>
</tr>
<tr>
<td>47%</td>
<td>-0.9*</td>
<td>2.02</td>
<td>3.10</td>
<td>1.71</td>
<td>-6.87; 1.04</td>
</tr>
<tr>
<td>46%</td>
<td>-3.9**</td>
<td>2.29</td>
<td>3.94</td>
<td>2.29</td>
<td>-8.44; 0.56</td>
</tr>
<tr>
<td>45%</td>
<td>-4.9**</td>
<td>2.72</td>
<td>4.90</td>
<td>2.67</td>
<td>-10.20; 0.46</td>
</tr>
<tr>
<td>44%</td>
<td>-6.0**</td>
<td>2.78</td>
<td>6.03</td>
<td>2.78</td>
<td>-11.48; 0.57</td>
</tr>
<tr>
<td>43%</td>
<td>-6.7**</td>
<td>3.10</td>
<td>6.68</td>
<td>3.10</td>
<td>-12.75; 0.60</td>
</tr>
<tr>
<td>42%</td>
<td>-7.5**</td>
<td>3.53</td>
<td>7.62</td>
<td>3.33</td>
<td>-14.46; 0.61</td>
</tr>
<tr>
<td>41%</td>
<td>-8.9**</td>
<td>3.75</td>
<td>8.95</td>
<td>3.75</td>
<td>-16.57; 1.18</td>
</tr>
<tr>
<td>40%</td>
<td>-9.4**</td>
<td>4.15</td>
<td>9.40</td>
<td>4.15</td>
<td>-17.54; 1.26</td>
</tr>
</tbody>
</table>

<i>p</i><i>value</i> for repeated measures ANOVA; **<i>p</i>*<i>value</i> for repeated measures ANOVA.

5. Accuracy range is a distance, measured in % of BML and mm, above and below the midshaft of the overall error (MAD%) is less than the accepted value of 5% (see comment about accepted error below). The accuracy range is computed using the distance of the cross-sections with MAD% nearest to the accepted error and the mean length of the BML interval from midshaft to selected cross-section.

To interpret the practical importance of limits of agreement and MAD%, the accepted error must be specified. The accepted error is defined as a quality of required reliability in the error. We expect that the accepted error also delimits the level of error that will have no impact on interpretation of the respective comparisons (e.g., comparisons between sexes or populations). It is obvious, however, that such a definition is subjective and depends on the goals of the analysis. The accepted error is frequently specified by a value derived from empirical observations (Hunter, 1980; Meloun and Militky, 1998). Such standards have not been developed for cross-sectional comparisons. The only suggestion for reasonably accurate cross-sections is the level of 5% difference established by Trinkaus and Ruff (1989). The accepted error of 5% difference was later used, for example, in other methodological studies of cross-sectional analyses (Stodd, 2002; O’Neill and Ruff, 2004). Therefore, we will regard differences of 5% or lower between the target location and the compared cross-section as being practically insignificant.

All the data were prepared in Excel 2003 (Microsoft Corporation, 1985–2003). Further analyses were produced in Excel 2003 or in Statistica 6.1 (StatSoft, 1984–2003). The statistical significance of MD% was tested using paired t-tests with Dunn-Šidák Type I error correction (Sokal and Rohlf, 1995).
The 5% difference from midshaft values is used for accepted error; mean distance of 1% BML interval is 4.04 mm for femora and 3.4 mm for tibiae.

RESULTS

Femoral midshaft location

Table 1 shows the directional bias and overall error for femoral geometric properties. Femoral CA has MD% values significantly different from the midshaft in the nearest 1% cross-section. By contrast, the second moments of area are significantly different only in the proximal and distal limits of the studied region. On average, there is no practical difference between error range in the proximal and distal directions except for femoral CA. The femoral CA overestimates midshaft value in the proximal direction and underestimates in the distal direction. This indicates that when midshaft is not accurately located, then the CA area is estimated on femora with lower accuracy and femoral second moments of area with higher accuracy.

Estimates for the femoral mean accuracy range are presented in Table 2. The accuracy range is calculated as an interval on the femoral shaft where the MAD% is not larger than the accepted error of 5% from the midshaft values. Femoral CA has the shortest mean accuracy range (MAR = 43 mm) and femoral J has the widest accuracy range (MAR = 74 mm). On average, the femoral accuracy range is wide enough for practical application in all biomechanical parameters.

Tibial midshaft location

The bias and error for tibial geometric properties are summarized in Table 3. Significant difference of the MD% from midshaft true values is found for CA from 47% distally but for I_{A-P} and J from the nearest 1% cross-section to midshaft. This result is also supported by 95% LA where 5% accepted error is reached by the LAs for CA farther from the midshaft than for second moments of area. Thus, these results indicate that tibial CA is estimated with higher reliability when midshaft is inaccurately located than are tibial second moments of area.

The mean accuracy ranges for tibial geometric properties are shown Table 2. The tibial CA has a mean accuracy range of about 132 mm, which indicates a high tolerance to the effect of inaccurate midshaft location. However, mean accuracy range for J is 20 mm and for I_{A-P} only 14 mm. This seems to be critical when the midshaft is located on highly damaged tibiae.

Individual variation

The mean accuracy ranges found for the majority of the cross-sectional parameters seem to be reasonably wide for practical application. Their use in practice is brought into question, however, by visual inspection of differences between the central tendencies of geometric properties and their individual distributions (Figs. 2–4). Visual inspection indicates that individual distributions vary as to the magnitude of changes in geometric properties and in the patterns of distribution for geometric properties (i.e., rates of geometric change per mm and locations of minima and maxima within the distribution). This result is also supported by significant departures from homoscedasticity for the majority of cross-sectional parameters tested using Bartlett’s and Levene’s tests. Thus, inaccurate midshaft location can result in unexpectedly high individual error even in properties for which the mean accuracy range is rather wide.

Figure 5 shows three examples of femoral I_{A-P} distribution near the midshaft region. According to central tendency, we would expect only slight change in the I_{A-P} distribution between 55 and 45% BML (Fig. 3a). However, the selected three individuals demonstrate that geometry can remain unchanged in the midshaft region (see Individual A) but also can rapidly decrease with minimum value distally from midshaft (Individual B) as well as increase with minimum value proximally (Individual C). Thus, the mean accuracy range can underestimate as well as overestimate the individual error, which points to a disadvantage for some individuals of using the mean accuracy range for predicting expected error.

Tables 4 and 5 summarize relative frequencies for the positions of minimum and maximum values along the femoral and tibial shafts. As indicated, femoral and tibial midshafts do not represent a constant pattern as to the positions of minima and maxima. In fact, minimum is reached in midshaft for I_{M-L} only in 10% and for J in 15% of cases. Moreover, the minimum for the I_{A-P} was not in midshaft but shifted either proximally or distally.

DISCUSSION

When midshaft location is inaccurately located, then tibial second moments of area are more unreliably estimated than are femoral second moments of area. The critical geometric properties are tibial I_{A-P} (MAR = 14 mm) and tibial J (MAR = 20 mm). Unreliability for tibial second moments of area is associated with the more rapidly changing geometry of the tibial midshaft. Thus, if tibial length is extremely tenuous (i.e., the proximal and/or distal end is missing), then we must be cautious in interpreting tibial second moments of area and in some cases we should consider not including that bone in the analysis.

Estimation of cortical area is more sensitive to midshaft location in femora (MAR for CA = 43 mm) than in tibiae (MAR for CA = 132 mm). In both cases, however, its mean accuracy range is fairly wide for practical application and, unlike tibial second moments of area, it does not increase greatly beyond that range.
Tibial midshaft is used as the true value. (For abbreviations and computation details see Table 1.)

There are slight contradictions between predicted (see Fig. 1) and observed (Figs. 2–4) errors for Pecos and Enelolithic or Bronze Age samples. This indicates that differences in morphology between populations, caused...
by environmental and genetic factors, would be expected to produce different mean accuracy ranges for estimated geometric properties. Similar variation has been found between individuals, which shows that obtained geometric properties can be estimated for some individuals with higher error than expected.

Individual variation in geometric properties is more important when fossil hominins with damaged bone are studied. Individual change of geometry near to midshaft can be so rapid that the wide mean accuracy range presented is unrealistic. When fossil hominins are studied, we recommend to specify how large an error we expect in locating the midshaft region by, for example, testing on a control sample with a known midshaft position as well as with simulation of the specific damage (e.g., the proximal and distal ends may be concealed in a manner that is similar to the studied individual). As the next step, we recommend to calculating error per mm from the location used for the midshaft and cross-sections 10 mm above and below the midshaft. If the error per mm indicates that properties change in the midshaft region only slowly (i.e., it results in a wide individual accepted range), then the fossil specimen can be interpreted with greater accuracy. On the other hand, if the

Fig. 3. Mean and selected individual distributions of \(I_{A-P} \) relative to femoral (a) and tibial (b) midshaft. Mean distribution is indicated by solid square.

Fig. 4. Mean and selected individual distributions of \(I_{M-L} \) relative to femoral (a) and tibial (b) midshaft. Mean distribution is indicated by solid square.

Fig. 5. The example of variability in pattern and magnitude near femoral midshaft for \(I_{A-P} \). Three females from Late Epipaleolithic and Early Bronze Age are selected: Hainburg 119 (A); Hainburg 21 (B); Kněževs (BBC) 768 (C). The 5% BML interval is used from 65 to 35% BML.
error per mm is large and the individual accepted range is too small then we can use error per mm for calculating an interval for respective geometric properties and use it for more accurate paleobiological comparison. Another possible approach when fossil bone length estimates are uncertain is to “bracket” section properties using a range of possible section locations in comparative samples with similar damage patterns and magnitudes compared to expected mean values. Thus, individual error range may help to define upper and lower limits in the analysis. There is significant variation in the distribution of cross-sectional parameters between individuals and in central tendencies. Thus, individual error due to midshaft location may significantly vary in both pattern and magnitude compared to expected mean accuracy range. Furthermore, the position of minimum and maximum for each cross-sectional property varies between 60 and 40% of BML. We recommend for specific cases (e.g., fossil hominins with highly damaged femora or tibiae) to calculate error in midshaft location using comparative samples with similar damage patterns and error change per mm in midshaft region by three cross-sections with 10-mm distance. The resulting individual error range may help to define upper and lower limits for the cross-sectional parameters studied when a fragmentary individual is analyzed.

ACKNOWLEDGMENTS

The authors are grateful to Miluše Dobisková, Maria Teschler-Nicola, and Petr Velemínský for access to the Late Eneolithic and Early Bronze Age samples curated in the Natural History Museum in Vienna and National Museum in Prague. The CT scanning was completed with support of the Institute of Radiology, at the University of Veterinary Medicine Vienna. Jennifer Marla Toyne and Joanna Gautney helped with correction of the English manuscript. They are grateful to Chris Ruff and two anonymous reviewers for their comments and help with final manuscript. They would also like to thank Ivo T. Budil and Jan Zíma for administrative support.

LITERATURE CITED

